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Today’s Agenda

● Activation Functions

● Data Preprocessing 

● Weight Initialization

● Batch Normalization 

● Optimizers 

● Regularization 

● Transfer learning / fine-tuning 2



Activation Functions
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Activation Functions
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Activation Functions
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Rectified Linear Unit (ReLU)

● Very computationally efficient

● Converges much faster than 
sigmoid/tanh in practice (e.g. 6x)
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Activation Functions
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Activation Functions
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Activation Functions
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Exponential LU

● Combine the good parts of 
ReLU and leaky ReLU 

● It doesn’t have the dying ReLU 
problem

● It saturates for large negative 
values, allowing them to be 
essentially inactive
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In Practice: Activation Functions

● Use ReLU

● Try out Leaky ReLU / ELU

● Try out tanh but don’t expect much

● Don’t use sigmoid
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https://towardsdatascience.com/activa
tion-functions-neural-networks-1cbd
9f8d91d6
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Data Preprocessing



Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/
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● Subtract the mean image (e.g., AlexNet)
(mean image = [32,32,3] array)

● Subtract per-channel mean (e.g., VGG)            
(mean along each channel = 3 numbers)

● Subtract per-channel mean and Divide by per-channel 
std (e.g., ResNet)                                                         
(mean along each channel = 3 numbers)

consider CIFAR-10 example with [32,32,3] images
Data Preprocessing
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Weight Initialization



Weight Initialization

● Xavier initialization [Glorot & Bengio, 2010]: “Understanding 
the difficulty of training deep feedforward neural networks”, 
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

w = np.random.randn(n)*sqrt(2.0/n)
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Weight Initialization

● Xavier initialization [Glorot & Bengio, 2010]: “Understanding 
the difficulty of training deep feedforward neural networks”, 
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

● He initialization [He et al., 2015]: “Delving Deep into 
Rectifiers: Surpassing Human-Level Performance on ImageNet 
Classification” https://arxiv.org/pdf/1502.01852

w = np.random.randn(n)*sqrt(2.0/n)
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Weight Initialization

● Xavier initialization [Glorot & Bengio, 2010]: 
● n = input + output 
●
● He initialization [He et al., 2015]: 
● n = input 

w = np.random.randn(n)*sqrt(2.0/n)
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Proper initialization is an active area of research...
● “Understanding the difficulty of training deep feedforward neural networks”, 

Glorot and Bengio, 2010
● “Exact solutions to the nonlinear dynamics of learning in deep linear neural 

networks”, Saxe et al, 2013
● “Random walk initialization for training very deep feedforward networks”, 

Sussillo and Abbott, 2014
● “Delving deep into rectifiers: Surpassing human-level performance on ImageNet 

classification”, He et al., 2015
● “Data-dependent initializations of convolutional neural networks”,          

Krähenbühl et al., 2015
● “All you need is a good init”, Mishkin and Matas, 2015
● “Fixup initialization: Residual learning without normalization”, Zhang et al., 2019
● “The lottery ticket hypothesis: Finding sparse, trainable neural networks”, Frankle 

and Carbin, 2019 19



http://www.deeplearning.ai/ai-notes/initialization
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Batch Normalization



Batch Normalization

● To increase the stability of a neural network, batch 
normalization normalizes the output of a previous 
activation layer by subtracting the batch mean and 
dividing by the batch standard deviation.

“Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, 
ICML 2015, https://arxiv.org/pdf/1502.03167 22

https://arxiv.org/pdf/1502.03167


“Batch Normalization: Accelerating 
Deep Network Training by Reducing 
Internal Covariate Shift”, 
https://arxiv.org/pdf/1502.03167 23

https://arxiv.org/pdf/1502.03167


Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity. 

Batch Normalization

FC

FC

ReLU

ReLU

BN

BN
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Batch Normalization: An Example (MNIST)

http://yann.lecun.com/exdb/mnist/ 25



Model without batch normalization:

 # Creating the model
 model_without_bn = Sequential()

 # Architecture
 model_without_bn.add(Dense(256, activation='relu', input_shape=(784,)))
 model_without_bn.add(Dense(128, activation='relu'))
 model_without_bn.add(Dense(64, activation='relu'))
 model_without_bn.add(Dense(10, activation='softmax'))

Batch Normalization: An Example (MNIST)
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Modelo com batch normalization:

 # Creating the model
 model_without_bn = Sequential()

 # Architecture
 model_with_bn.add(Dense(256, use_bias=False, input_shape=(784,)))
 model_with_bn.add(BatchNormalization())
 model_with_bn.add(Activation('relu'))

 model_with_bn.add(Dense(128, use_bias=False))
 model_with_bn.add(BatchNormalization())
 model_with_bn.add(Activation('relu'))

 model_with_bn.add(Dense(64, use_bias=False))
 model_with_bn.add(BatchNormalization())
 model_with_bn.add(Activation('relu'))

 model_with_bn.add(Dense(10, activation='softmax'))

Model with batch normalization:
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● epochs = 10

● batch size = 128

● learning rate = 0.01

● data normalization: X/255

● weight init: glorot_uniform

Batch Normalization (1): An Example (MNIST)
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● epochs = 10

● batch size = 128 → 1024

● learning rate = 0.01 → 1

● data normalization: X/255

● weight init: glorot_uniform

Batch Normalization (2): An Example (MNIST)
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● epochs = 10

● batch size = 128

● learning rate = 0.01

● data normalization: X/255

● weight init: glorot_uniform → 
RandomUniform(minval=-5, maximal=5)

Batch Normalization (3): An Example (MNIST)
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● epochs = 10

● batch size = 128

● learning rate = 0.01

● data normalization: X/255 → no norm

● weight init: glorot_uniform  

Batch Normalization (4): An Example (MNIST)
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● Makes deep networks much easier to train!

● Improves gradient flow

● Allows higher learning rates, faster convergence

● Networks become more robust to initialization

● Acts as regularization during training

Batch Normalization 
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“Fitting Batch Norm Into Neural Networks”, deeplearning.ai 
https://youtu.be/em6dfRxYkYU

“How does Batch Normalization Help Optimization?”, Ilyas et al., 
NeurIPS 2018, http://gradientscience.org/batchnorm/

“The Batch Normalization layer of Keras is broken”, 
http://blog.datumbox.com/the-batch-normalization-layer-of-keras
-is-broken/

Batch Normalization 
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Normalization 

“Layer normalization”, arXiv 2016, https://arxiv.org/pdf/1607.06450.pdf
“Improved texture networks: …”, CVPR 2017, https://arxiv.org/pdf/1701.02096.pdf

“Group normalization”, ECCV 2018, https://arxiv.org/pdf/1803.08494.pdf 38
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Normalization 

“Layer normalization”, arXiv 2016, https://arxiv.org/pdf/1607.06450.pdf
“Improved texture networks: …”, CVPR 2017, https://arxiv.org/pdf/1701.02096.pdf

“Group normalization”, ECCV 2018, https://arxiv.org/pdf/1803.08494.pdf 39
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Proper normalization is an active area of research...
● “Batch Normalization: Accelerating Deep Network Training by Reducing Internal 

Covariate Shift”, Ioffe and Szegedy, 2015
● “Layer normalization”, Ba, Kiros, Hinton, 2016
● “Weight Normalization: A Simple Reparameterization to Accelerate Training of 

Deep Neural Networks”, Salimans and Kingma, 2016
● “Improved Texture Networks: Maximizing Quality and Diversity inFeed-forward 

Stylization and Texture Synthesis”, Ulyanov, Vedaldi and Vedaldi, 2017 
● “Batch Renormalization: Towards Reducing Minibatch Dependence in 

Batch-Normalized Models”,  Ioffe, 2017
● “Group normalization”, Wu and He, 2018
● “Do Normalization Layers in a Deep ConvNet Really Need to Be Distinct?”, Luo,  

Peng, Ren, and Zhang, 2018
● “Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks”, 

Nam and Kim, 2019 40



Normalization 

An Overview of Normalization Methods in Deep Learning 
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-l
earning/ Nov. 2018
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Today’s Agenda

● Activation Functions (use ReLU)

● Data Preprocessing (images: subtract mean)

● Weight Initialization (use Xavier/He init)

● Batch Normalization (use)

● Optimizers 

● Regularization 

● Transfer learning / fine-tuning 42



Optimizers



Optimizers

● Batch gradient descent

● Stochastic gradient descent

● Mini-batch gradient descent

● Momentum

● Nesterov

● Adagrad

● Adadelta

● RMSprop

● Adam

● AdaMax

● Nadam

● AMSGrad

● RAdam
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Optimizers
http://www.deeplearning.ai/ai-notes/optimization/
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In Practice: Optimizers

● Adam is a good default choice in many cases; it often works 
ok even with constant learning rate

● SGD+Momentum can outperform Adam but may require 
more tuning of LR and schedule
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Regularization



Regularization

● Dropout 
● Batch Normalization
● Data Augmentation
● DropConnect
● Fractional Max Pooling
● Stochastic Depth
● Cutout
● Mixup
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In Practice: Regularization

● Consider dropout for large fully-connected layers

● Batch normalization and data augmentation almost 
always a good idea

● Try cutout and mixup especially for small classification 
datasets 
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Transfer Learning



Transfer Learning

“You need a lot of a data if you 
want to train/use CNNs”
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Transfer Learning

“You need a lot of a data if you 
want to train/use CNNs”
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Transfer Learning with CNNs
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Transfer Learning with CNNs

Train on ImageNet
(or large dataset) 54



Transfer Learning with CNNs

Train on
ImageNet

Small dataset (C classes):
Transfer learning with fine-tuning 55



Transfer Learning with CNNs

Train on
ImageNet

Small dataset (C classes):
Transfer learning with fine-tuning 56



Transfer Learning with CNNs

Train on
ImageNet

FC C

Small dataset (C classes):
Transfer learning with fine-tuning 57



Transfer Learning with CNNs

Train on
ImageNet

FC C

Freeze these

Reinitialize 
this and train

Small dataset (C classes):
Transfer learning with fine-tuning 58



 # Cria o modelo pré-treinado
 # include_top: incluir ou não a camada totalmente conectada
 # na parte superior da rede
 base_model = VGG16(weights='imagenet', include_top=False)

 # Adiciona nova camada com 10 classes
 ...
 predictions = Dense(10, activation='softmax')(x)

 # Modelo que será treinado
 model = Model(inputs=base_model.input, outputs=predictions)

 # Congela todas as camadas 
 for layer in base_model.layers:

 layer.trainable = False
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Transfer Learning with CNNs

Train on
ImageNet

Freeze these

Small dataset (C classes):
Transfer learning without fine-tuning 60



VGG as Feature Extractor

[0.01 0.8 1 0.5 … 0.3 0.07 0 0.4 0.6 0 0]
4096-d  

Transfer Learning with CNNs
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VGG as Feature Extractor

[0.01 0.8 1 0.5 … 0.3 0.07 0 0.4 0.6 0 0]
4096-d  

Train a classifier (e.g., SVM)

Transfer Learning with CNNs
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 # Cria o modelo pré-treinado
 base_model = VGG16(weights='imagenet')

 # Modelo que será treinado
 model = Model(inputs=base_model.input,  

 outputs=base_model.get_layer('fc7').output)

 # Extração de features 
 img = ... 
 features = model.predict(img)
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Transfer Learning with CNNs

Train on
ImageNet

FC CFC C Train this

Medium dataset      
(C classes):
Transfer learning 
with fine-tuning

Reinitialize 
this and train

Freeze these

Transfer learning 
with fine-tuning 64



Transfer Learning with CNNs

Train on
ImageNet

FC C Train thisFC C

Reinitialize 
this and train

Freeze these

Transfer learning 
with fine-tuning

Medium dataset      
(C classes):
Transfer learning 
with fine-tuning65



Transfer Learning with CNNs

Train on
ImageNet

FC C Train this

Transfer learning 
with fine-tuning

FC C

Reinitialize 
this and train

Freeze these

Transfer learning 
with fine-tuning

Lower learning rate 
when fine-tuning; 
1/10 of original LR 
is good starting 
point
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 # Cria o modelo pré-treinado
 # include_top: incluir ou não a camada totalmente conectada
 # na parte superior da rede
 base_model = VGG16(weights='imagenet', include_top=False)

 # Adiciona nova camada com 10 classes
 ...
 predictions = Dense(10, activation='softmax')(x)

 # Modelo que será treinado
 model = Model(inputs=base_model.input, outputs=predictions)

 # Congela algumas camadas 
 for layer in base_model.layers[:8]:

 layer.trainable = False
 for layer in base_model.layers[8:]:

 layer.trainable = True
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 # Cria o modelo pré-treinado
 # include_top: incluir ou não a camada totalmente conectada
 # na parte superior da rede
 base_model = VGG16(weights='imagenet', include_top=False)

 # Adiciona nova camada com 10 classes
 ...
 predictions = Dense(10, activation='softmax')(x)

 # Modelo que será treinado
 model = Model(inputs=base_model.input, outputs=predictions)

 # Congela algumas camadas 
 for layer in base_model.layers[:8]:

 layer.trainable = False
 for layer in base_model.layers[8:]:

 layer.trainable = True
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More specific

More generic

Very similar 
dataset

Very different 
dataset

Very 
little 
data

? ?

Quite a 
lot of 
data

? ?
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https://distill.pub/2017/feature-visualization

Edges Textures Patterns Parts Objects

 More generic      More specific 
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https://distill.pub/2017/feature-visualization

71



More specific

More generic

Very similar 
dataset

Very different 
dataset

Very 
little 
data

? ?

Quite a 
lot of 
data

? ?
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More specific

More generic

Very similar 
dataset

Very different 
dataset

Very 
little 
data

Use Linear 
Classifier on top 

layer
?

Quite a 
lot of 
data

? ?
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More specific

More generic

Very similar 
dataset

Very different 
dataset

Very 
little 
data

Use Linear 
Classifier on top 

layer
?

Quite a 
lot of 
data

Finetune a few 
layers ?
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More specific

More generic

Very similar 
dataset

Very different 
dataset

Very 
little 
data

Use Linear 
Classifier on top 

layer
?

Quite a 
lot of 
data

Finetune a few 
layers

Finetune a larger 
number of layers

75



More specific

More generic

Very similar 
dataset

Very different 
dataset

Very 
little 
data

Use Linear 
Classifier on top 

layer

You’re in trouble... 
Try linear classifier 

from different 
stages

Quite a 
lot of 
data

Finetune a few 
layers

Finetune a larger 
number of layers
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http://www.ic.unicamp.br/~sandra/pdf/papers/menegola_ISBI17.pdf
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+35.000 +1.200.0002.000

ImageNet -> Melanoma 

Double Transfer:
ImageNet -> Retina &
Retina -> Melanoma

VGG-16 
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+35.000 +1.200.0002.000

ImageNet -> Melanoma 

Double Transfer:
ImageNet -> Retina &
Retina -> Melanoma

VGG-16 
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http://www.sciencedirect.com/science/article/pii/S1047320317302377
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250.000 +1.200.000~60.000

ImageNet -> Child Porn 

Double Transfer:
ImageNet -> Porn &
Porn -> Child Porn

GoogLeNet
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● Have some dataset of interest but it has < ~1M images?

○ Find a very large dataset that has similar data, train a 
big CNN there

○ Transfer learn to your dataset

● You don’t need to train your own:

○ TensorFlow: https://github.com/tensorflow/models 

○ PyTorch: https://github.com/pytorch/vision

Takeaway for your projects and beyond ...
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Today’s Agenda

● Activation Functions (use ReLU)

● Data Preprocessing (images: subtract mean)

● Weight Initialization (use Xavier/He init)

● Batch Normalization (use)

● Optimizers (use Adam)

● Regularization (use)

● Transfer learning / fine-tuning (use) 83


