
Training [Deep] Neural Networks
Machine Learning

MC886, October 23, 2019

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

(Largely based on slides from Fei-Fei Li & Justin Johnson & Serena Yeung)

REC D
reasoning for complex data

Today’s Agenda

● Activation Functions

● Data Preprocessing

● Weight Initialization

● Batch Normalization

● Optimizers

● Regularization

● Transfer learning / fine-tuning 2

Activation Functions

3

x1

xn

𝜃1

𝜃n
⠇

Activation function

Recall from last time ...

4

Activation Functions

1

0.5

0 x

1

0

-1

x

Sigmoid Tanh

Hyperbolic Tangent 5

Activation Functions

20

10

0 x

ReLU

Rectified Linear Unit (ReLU)

● Very computationally efficient

● Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

6

Activation Functions

20

10

0 x

20

10

0 x

ReLU Leaky ReLU

7

Activation Functions

20

10

0 x

ELU

E

20

10

0 x

PReLU

𝛼 () 𝛼P

Exponential LU 8

Activation Functions

20

10

0 x

ELU

E 𝛼 ()
Exponential LU

● Combine the good parts of
ReLU and leaky ReLU

● It doesn’t have the dying ReLU
problem

● It saturates for large negative
values, allowing them to be
essentially inactive

9

In Practice: Activation Functions

● Use ReLU

● Try out Leaky ReLU / ELU

● Try out tanh but don’t expect much

● Don’t use sigmoid

10

https://towardsdatascience.com/activa
tion-functions-neural-networks-1cbd
9f8d91d6

11

Data Preprocessing

Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/

13

● Subtract the mean image (e.g., AlexNet)
(mean image = [32,32,3] array)

● Subtract per-channel mean (e.g., VGG)
(mean along each channel = 3 numbers)

● Subtract per-channel mean and Divide by per-channel
std (e.g., ResNet)
(mean along each channel = 3 numbers)

consider CIFAR-10 example with [32,32,3] images
Data Preprocessing

14

Weight Initialization

Weight Initialization

● Xavier initialization [Glorot & Bengio, 2010]: “Understanding
the difficulty of training deep feedforward neural networks”,
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

w = np.random.randn(n)*sqrt(2.0/n)

16

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Weight Initialization

● Xavier initialization [Glorot & Bengio, 2010]: “Understanding
the difficulty of training deep feedforward neural networks”,
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

● He initialization [He et al., 2015]: “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification” https://arxiv.org/pdf/1502.01852

w = np.random.randn(n)*sqrt(2.0/n)

17

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852

Weight Initialization

● Xavier initialization [Glorot & Bengio, 2010]:
● n = input + output
●
● He initialization [He et al., 2015]:
● n = input

w = np.random.randn(n)*sqrt(2.0/n)

18

Proper initialization is an active area of research...
● “Understanding the difficulty of training deep feedforward neural networks”,

Glorot and Bengio, 2010
● “Exact solutions to the nonlinear dynamics of learning in deep linear neural

networks”, Saxe et al, 2013
● “Random walk initialization for training very deep feedforward networks”,

Sussillo and Abbott, 2014
● “Delving deep into rectifiers: Surpassing human-level performance on ImageNet

classification”, He et al., 2015
● “Data-dependent initializations of convolutional neural networks”,

Krähenbühl et al., 2015
● “All you need is a good init”, Mishkin and Matas, 2015
● “Fixup initialization: Residual learning without normalization”, Zhang et al., 2019
● “The lottery ticket hypothesis: Finding sparse, trainable neural networks”, Frankle

and Carbin, 2019 19

http://www.deeplearning.ai/ai-notes/initialization

20

Batch Normalization

Batch Normalization

● To increase the stability of a neural network, batch
normalization normalizes the output of a previous
activation layer by subtracting the batch mean and
dividing by the batch standard deviation.

“Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”,
ICML 2015, https://arxiv.org/pdf/1502.03167 22

https://arxiv.org/pdf/1502.03167

“Batch Normalization: Accelerating
Deep Network Training by Reducing
Internal Covariate Shift”,
https://arxiv.org/pdf/1502.03167 23

https://arxiv.org/pdf/1502.03167

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

Batch Normalization

FC

FC

ReLU

ReLU

BN

BN

24

Batch Normalization: An Example (MNIST)

http://yann.lecun.com/exdb/mnist/ 25

Model without batch normalization:

 # Creating the model
 model_without_bn = Sequential()

 # Architecture
 model_without_bn.add(Dense(256, activation='relu', input_shape=(784,)))
 model_without_bn.add(Dense(128, activation='relu'))
 model_without_bn.add(Dense(64, activation='relu'))
 model_without_bn.add(Dense(10, activation='softmax'))

Batch Normalization: An Example (MNIST)

26

Modelo com batch normalization:

 # Creating the model
 model_without_bn = Sequential()

 # Architecture
 model_with_bn.add(Dense(256, use_bias=False, input_shape=(784,)))
 model_with_bn.add(BatchNormalization())
 model_with_bn.add(Activation('relu'))

 model_with_bn.add(Dense(128, use_bias=False))
 model_with_bn.add(BatchNormalization())
 model_with_bn.add(Activation('relu'))

 model_with_bn.add(Dense(64, use_bias=False))
 model_with_bn.add(BatchNormalization())
 model_with_bn.add(Activation('relu'))

 model_with_bn.add(Dense(10, activation='softmax'))

Model with batch normalization:

27

● epochs = 10

● batch size = 128

● learning rate = 0.01

● data normalization: X/255

● weight init: glorot_uniform

Batch Normalization (1): An Example (MNIST)

28

 0 1 2 3 4 5 6 7 8 9

0.99

0.98

0.97

0.96

0.95

0.94

0.93

Ac
cu

ra
cy

Epoch

Without BN
With BN

Without Batch Normalization test-acc: 0.966
With Batch Normalization test-acc: 0.974 29

● epochs = 10

● batch size = 128 → 1024

● learning rate = 0.01 → 1

● data normalization: X/255

● weight init: glorot_uniform

Batch Normalization (2): An Example (MNIST)

30

 0 1 2 3 4 5 6 7 8 9
Epoch

1.0

0.8

0.6

0.4

0.2

Ac
cu

ra
cy

Without BN
With BN

Without Batch Normalization test-acc: 0.089
With Batch Normalization test-acc: 0.950 31

● epochs = 10

● batch size = 128

● learning rate = 0.01

● data normalization: X/255

● weight init: glorot_uniform →
RandomUniform(minval=-5, maximal=5)

Batch Normalization (3): An Example (MNIST)

32

 0 1 2 3 4 5 6 7 8 9
Epoch

1.0

0.8

0.6

0.4

0.2

Ac
cu

ra
cy

Without BN
With BN

Without Batch Normalization test-acc: 0.352
With Batch Normalization test-acc: 0.966 33

● epochs = 10

● batch size = 128

● learning rate = 0.01

● data normalization: X/255 → no norm

● weight init: glorot_uniform

Batch Normalization (4): An Example (MNIST)

34

 0 1 2 3 4 5 6 7 8 9
Epoch

Ac
cu

ra
cy

1.0

0.8

0.6

0.4

0.2

Without BN
With BN

Without Batch Normalization test-acc: 0.113
With Batch Normalization test-acc: 0.977 35

● Makes deep networks much easier to train!

● Improves gradient flow

● Allows higher learning rates, faster convergence

● Networks become more robust to initialization

● Acts as regularization during training

Batch Normalization

36

“Fitting Batch Norm Into Neural Networks”, deeplearning.ai
https://youtu.be/em6dfRxYkYU

“How does Batch Normalization Help Optimization?”, Ilyas et al.,
NeurIPS 2018, http://gradientscience.org/batchnorm/

“The Batch Normalization layer of Keras is broken”,
http://blog.datumbox.com/the-batch-normalization-layer-of-keras
-is-broken/

Batch Normalization

37

https://youtu.be/em6dfRxYkYU
http://gradientscience.org/batchnorm/
http://blog.datumbox.com/the-batch-normalization-layer-of-keras-is-broken/
http://blog.datumbox.com/the-batch-normalization-layer-of-keras-is-broken/

Normalization

“Layer normalization”, arXiv 2016, https://arxiv.org/pdf/1607.06450.pdf
“Improved texture networks: …”, CVPR 2017, https://arxiv.org/pdf/1701.02096.pdf

“Group normalization”, ECCV 2018, https://arxiv.org/pdf/1803.08494.pdf 38

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1701.02096.pdf
https://arxiv.org/pdf/1803.08494.pdf

Normalization

“Layer normalization”, arXiv 2016, https://arxiv.org/pdf/1607.06450.pdf
“Improved texture networks: …”, CVPR 2017, https://arxiv.org/pdf/1701.02096.pdf

“Group normalization”, ECCV 2018, https://arxiv.org/pdf/1803.08494.pdf 39

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1701.02096.pdf
https://arxiv.org/pdf/1803.08494.pdf

Proper normalization is an active area of research...
● “Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift”, Ioffe and Szegedy, 2015
● “Layer normalization”, Ba, Kiros, Hinton, 2016
● “Weight Normalization: A Simple Reparameterization to Accelerate Training of

Deep Neural Networks”, Salimans and Kingma, 2016
● “Improved Texture Networks: Maximizing Quality and Diversity inFeed-forward

Stylization and Texture Synthesis”, Ulyanov, Vedaldi and Vedaldi, 2017
● “Batch Renormalization: Towards Reducing Minibatch Dependence in

Batch-Normalized Models”, Ioffe, 2017
● “Group normalization”, Wu and He, 2018
● “Do Normalization Layers in a Deep ConvNet Really Need to Be Distinct?”, Luo,

Peng, Ren, and Zhang, 2018
● “Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks”,

Nam and Kim, 2019 40

Normalization

An Overview of Normalization Methods in Deep Learning
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-l
earning/ Nov. 2018

41

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Today’s Agenda

● Activation Functions (use ReLU)

● Data Preprocessing (images: subtract mean)

● Weight Initialization (use Xavier/He init)

● Batch Normalization (use)

● Optimizers

● Regularization

● Transfer learning / fine-tuning 42

Optimizers

Optimizers

● Batch gradient descent

● Stochastic gradient descent

● Mini-batch gradient descent

● Momentum

● Nesterov

● Adagrad

● Adadelta

● RMSprop

● Adam

● AdaMax

● Nadam

● AMSGrad

● RAdam

44

Optimizers
http://www.deeplearning.ai/ai-notes/optimization/

45

In Practice: Optimizers

● Adam is a good default choice in many cases; it often works
ok even with constant learning rate

● SGD+Momentum can outperform Adam but may require
more tuning of LR and schedule

46

Regularization

Regularization

● Dropout
● Batch Normalization
● Data Augmentation
● DropConnect
● Fractional Max Pooling
● Stochastic Depth
● Cutout
● Mixup

48

In Practice: Regularization

● Consider dropout for large fully-connected layers

● Batch normalization and data augmentation almost
always a good idea

● Try cutout and mixup especially for small classification
datasets

49

Transfer Learning

Transfer Learning

“You need a lot of a data if you
want to train/use CNNs”

51

Transfer Learning

“You need a lot of a data if you
want to train/use CNNs”

52

Transfer Learning with CNNs

53

Transfer Learning with CNNs

Train on ImageNet
(or large dataset) 54

Transfer Learning with CNNs

Train on
ImageNet

Small dataset (C classes):
Transfer learning with fine-tuning 55

Transfer Learning with CNNs

Train on
ImageNet

Small dataset (C classes):
Transfer learning with fine-tuning 56

Transfer Learning with CNNs

Train on
ImageNet

FC C

Small dataset (C classes):
Transfer learning with fine-tuning 57

Transfer Learning with CNNs

Train on
ImageNet

FC C

Freeze these

Reinitialize
this and train

Small dataset (C classes):
Transfer learning with fine-tuning 58

 # Cria o modelo pré-treinado
 # include_top: incluir ou não a camada totalmente conectada
 # na parte superior da rede
 base_model = VGG16(weights='imagenet', include_top=False)

 # Adiciona nova camada com 10 classes
 ...
 predictions = Dense(10, activation='softmax')(x)

 # Modelo que será treinado
 model = Model(inputs=base_model.input, outputs=predictions)

 # Congela todas as camadas
 for layer in base_model.layers:

 layer.trainable = False

59

Transfer Learning with CNNs

Train on
ImageNet

Freeze these

Small dataset (C classes):
Transfer learning without fine-tuning 60

VGG as Feature Extractor

[0.01 0.8 1 0.5 … 0.3 0.07 0 0.4 0.6 0 0]
4096-d

Transfer Learning with CNNs

61

VGG as Feature Extractor

[0.01 0.8 1 0.5 … 0.3 0.07 0 0.4 0.6 0 0]
4096-d

Train a classifier (e.g., SVM)

Transfer Learning with CNNs

62

 # Cria o modelo pré-treinado
 base_model = VGG16(weights='imagenet')

 # Modelo que será treinado
 model = Model(inputs=base_model.input,

 outputs=base_model.get_layer('fc7').output)

 # Extração de features
 img = ...
 features = model.predict(img)

63

Transfer Learning with CNNs

Train on
ImageNet

FC CFC C Train this

Medium dataset
(C classes):
Transfer learning
with fine-tuning

Reinitialize
this and train

Freeze these

Transfer learning
with fine-tuning 64

Transfer Learning with CNNs

Train on
ImageNet

FC C Train thisFC C

Reinitialize
this and train

Freeze these

Transfer learning
with fine-tuning

Medium dataset
(C classes):
Transfer learning
with fine-tuning65

Transfer Learning with CNNs

Train on
ImageNet

FC C Train this

Transfer learning
with fine-tuning

FC C

Reinitialize
this and train

Freeze these

Transfer learning
with fine-tuning

Lower learning rate
when fine-tuning;
1/10 of original LR
is good starting
point

66

 # Cria o modelo pré-treinado
 # include_top: incluir ou não a camada totalmente conectada
 # na parte superior da rede
 base_model = VGG16(weights='imagenet', include_top=False)

 # Adiciona nova camada com 10 classes
 ...
 predictions = Dense(10, activation='softmax')(x)

 # Modelo que será treinado
 model = Model(inputs=base_model.input, outputs=predictions)

 # Congela algumas camadas
 for layer in base_model.layers[:8]:

 layer.trainable = False
 for layer in base_model.layers[8:]:

 layer.trainable = True
67

 # Cria o modelo pré-treinado
 # include_top: incluir ou não a camada totalmente conectada
 # na parte superior da rede
 base_model = VGG16(weights='imagenet', include_top=False)

 # Adiciona nova camada com 10 classes
 ...
 predictions = Dense(10, activation='softmax')(x)

 # Modelo que será treinado
 model = Model(inputs=base_model.input, outputs=predictions)

 # Congela algumas camadas
 for layer in base_model.layers[:8]:

 layer.trainable = False
 for layer in base_model.layers[8:]:

 layer.trainable = True
68

More specific

More generic

Very similar
dataset

Very different
dataset

Very
little
data

? ?

Quite a
lot of
data

? ?

69

https://distill.pub/2017/feature-visualization

Edges Textures Patterns Parts Objects

 More generic More specific
70

https://distill.pub/2017/feature-visualization

71

More specific

More generic

Very similar
dataset

Very different
dataset

Very
little
data

? ?

Quite a
lot of
data

? ?

72

More specific

More generic

Very similar
dataset

Very different
dataset

Very
little
data

Use Linear
Classifier on top

layer
?

Quite a
lot of
data

? ?

73

More specific

More generic

Very similar
dataset

Very different
dataset

Very
little
data

Use Linear
Classifier on top

layer
?

Quite a
lot of
data

Finetune a few
layers ?

74

More specific

More generic

Very similar
dataset

Very different
dataset

Very
little
data

Use Linear
Classifier on top

layer
?

Quite a
lot of
data

Finetune a few
layers

Finetune a larger
number of layers

75

More specific

More generic

Very similar
dataset

Very different
dataset

Very
little
data

Use Linear
Classifier on top

layer

You’re in trouble...
Try linear classifier

from different
stages

Quite a
lot of
data

Finetune a few
layers

Finetune a larger
number of layers

76

http://www.ic.unicamp.br/~sandra/pdf/papers/menegola_ISBI17.pdf

77

http://www.ic.unicamp.br/~sandra/pdf/papers/menegola_ISBI17.pdf

+35.000 +1.200.0002.000

ImageNet -> Melanoma

Double Transfer:
ImageNet -> Retina &
Retina -> Melanoma

VGG-16

78

+35.000 +1.200.0002.000

ImageNet -> Melanoma

Double Transfer:
ImageNet -> Retina &
Retina -> Melanoma

VGG-16

79

http://www.sciencedirect.com/science/article/pii/S1047320317302377

80

http://www.sciencedirect.com/science/article/pii/S1047320317302377

250.000 +1.200.000~60.000

ImageNet -> Child Porn

Double Transfer:
ImageNet -> Porn &
Porn -> Child Porn

GoogLeNet

81

● Have some dataset of interest but it has < ~1M images?

○ Find a very large dataset that has similar data, train a
big CNN there

○ Transfer learn to your dataset

● You don’t need to train your own:

○ TensorFlow: https://github.com/tensorflow/models

○ PyTorch: https://github.com/pytorch/vision

Takeaway for your projects and beyond ...

82

https://github.com/tensorflow/models
https://github.com/pytorch/vision

Today’s Agenda

● Activation Functions (use ReLU)

● Data Preprocessing (images: subtract mean)

● Weight Initialization (use Xavier/He init)

● Batch Normalization (use)

● Optimizers (use Adam)

● Regularization (use)

● Transfer learning / fine-tuning (use) 83

